長沙理工大學(xué)學(xué)術(shù)活動預(yù)告
報告承辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院
報告內(nèi)容: Homogeneity breaking instability of the periodic solutions in reaction diffusion equations
報告人姓名: 衣鳳岐
報告人所在單位: 大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院
報告人職稱/職務(wù)及學(xué)術(shù)頭銜: 教授、博導(dǎo)
報告時間: 2020年1月6日 (周一)上午10:30
報告地點: 理科樓A419
報告人簡介: 衣鳳岐,大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院二級教授、博士生導(dǎo)師。2008年于哈爾濱工業(yè)大學(xué)獲得理學(xué)博士學(xué)位,導(dǎo)師為魏俊杰教授。2010年獲全國百篇優(yōu)秀博士學(xué)位論文提名獎;2013年入選教育部新世紀優(yōu)秀人才;主要從事微分方程與動力系統(tǒng)的研究,特別關(guān)注反應(yīng)擴散方程的分支理論及其應(yīng)用。部分工作發(fā)表在Journal of Differential Equations, Journal of Dynamics and Differential Equations, Physica D: Nonlinear Phenomena等雜志上。
報告摘要:In this talk, I will report our recent results on a class of general reaction-diffusion equations arising from chemical reactions and population dynamics. We are mainly concerned with the homogeneity breaking instability of the spatially homogeneous periodic solutions which are stable in the corresponding ODEs. A precise sufficient condition on the system parameters, especially on the diffusion coefficients, is derived to guarantee such kind of instability. The results allow for the clearer understanding of the mechanism of the pattern formation of this kind of reaction diffusion equations.