高清一区二区三区日本久,国产精品亚洲一区二区三区,黑人异族巨大巨大巨粗,久久久精品中文字幕麻豆发布

當前位置: 網站首頁 > 師資隊伍 > 研究生導師 > 正文 >

涂勁之

一、基本情況

姓名:涂勁之

性別:男

學歷學位:博士

職稱:講師/碩導

研究方向:地質災害防治、人工智能、計算力學

電子郵箱:tujingzhi@csust.edu.cn

二、項目

(1)降雨條件下湘西北紅層斜坡地質災害成災機理與易發性人工智能預警系統研究

(2)基于人工智能大模型的個人知識庫問答系統開發

三、代表性論文

1. Jingzhi Tu; Chun Liu; Pian. Qi. Physics-informed Neural Network Integrating PointNet-based Adaptive Refinement for Investigating Crack Propagation in Industrial Applications. IEEE Transactions on Industrial Informatics. 19(2): 2210-2218 (2023). (IF=12.3,中科院一區)

2. Jingzhi Tu; Nengxiong Xu; Gang Mei. A peridynamics modeling approach for pre-cracked rock cracking processes under impact by integrating Drucker-Prager plasticity model and efficient contact model. Journal of Rock Mechanics and Geotechnical Engineering. PP: 1-20 (2025). (IF=9.4,中科院一區)

3. Jingzhi Tu; Gang Mei; Francesco Piccialli. An Improved Nystr?m Spectral Graph Clustering Using k-core Decomposition as a Sampling Strategy for Large Networks. Journal of King Saud University - Computer and Information Sciences. 34(6): 3673-3684 (2022). (IF=6.9,中科院二區)

4. Jingzhi Tu; Gang Mei; Francesco Piccialli. An Efficient Deep Learning Approach Using Improved Generative Adversarial Networks for Incomplete Information Completion of Self-driving Vehicles. Journal of Grid Computing. 20, 21 (2022). (IF=5.5,中科院二區)

5. Jingzhi Tu; Gang Mei; Zhengjing Ma; Francesco Piccialli. SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 15: 5662-5673 (2022). (IF=5.5,中科院二區)


歡迎有一定編程基礎,或對于人工智能與工程軟件開發感興趣的同學聯系,在新領域一起研究探討。


CopyRight © 2022 All Right Reserved 長沙理工大學 土木與環境工程學院 版權所有
  • <center id="9wjrh"></center>
    <bdo id="9wjrh"></bdo>